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Abstract

Recently, triangle configuration based bivariate simplex splines (referred to as TCB-spline) have been introduced to
the geometric computing community. TCB-splines retain many attractive theoretic properties of classical B-splines,
such as partition of unity, local support, polynomial reproduction and automatic inbuilt high-order smoothness. In this
paper, we propose a computational framework for isogeometric analysis using TCB-splines. The centroidal Voronoi
tessellation method is used to generate a set of knots that are distributed evenly over the domain. Then, knot subsets
are carefully selected by a so-called link triangulation procedure (LTP), on which shape functions are defined in a
recursive manner. To achieve high-precision numerical integration, triangle faces served as background integration
cells are obtained by triangulating the entire domain restricted to all knot lines, i.e., line segments defined by any
two knots in a knot subset. Various numerical examples are carried out to demonstrate the efficiency, flexibility and
optimal convergence rates of the proposed method.
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1. Introduction

Classical univariate B-splines have been comprehensively studied and widely used in today’s industrial ap-
plications due to their superior capability of representing both free-form and common analytical shapes. Their
bivariate generalizations have also found many applications in the area of data fitting, geometric shape modeling
and numerical analysis of partial differential equations (PDEs). These bivariate generalizations can be classified into
tensor product splines and non-tensor product splines. Tensor-product splines use tensor product to define bivariate
B-spline basis functions, typical examples including non-uniform rational B-splines (NURBS) [1] and T-splines [2].
NURBS are the de facto industry standard in commercial computer-aided design (CAD) systems. Despite their
popularity, tensor product splines have some serious drawbacks. For example, tensor product surfaces are restricted
to four-sided domains and thus have difficulty in modeling shapes with arbitrary topology. Although algorithm-
wise complicated, non-tensor product splines provide alternative powerful tools in modeling complex shapes and
approximating scattered data and functions. In addition to four-side domains, they can be defined over triangles [3],
multi-sided domains [4], triangulations [5, 6, 7] and higher order triangulations [8, 9]. For example, triangle
configuration based bivariate simplex splines, referred to as TCB-splines [10], are generalizations of univariate B-
splines.

Isogeometric analysis (IGA) has been introduced to seamlessly integrate CAD and traditional finite element
method (FEM) by employing the same basis functions on both sides [11]. The initial investigations of IGA focused
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on NURBS due to their dominance in industrial CAD system. However, the inherent tensor-produce structure of
NURBS make it difficult to represent a complex geometry or perform local refinement. To support local refinement,
several strategies have been introduced, including T-splines [2, 12], hierarchical B-splines [13], LR-splines [14, 15],
THB-splines [16, 17], and hierarchical T-splines [18]. However, due to their (local) tensor-product structures, there
are still restrictions on the refinement. For example, local refinement of T-splines generally propagates beyond the
region of interest, whereas hierarchical B-splines require a minimum size of the to-be-refined region.

To overcome the tensor-product restriction, many advances have been made in using non-tensor product splines
in IGA and FEM, such as triangular/tetrahedral Bézier patches [19, 20, 21], Powell–Sabin splines [22, 23, 24, 25,
26, 27], triangular NURPS [28, 29] and so forth. The approach using rational triangular Bézier patches focuses on
automatically generating meshes of C0-continuous Bernstein–Bézier triangles [20]. The triangular B-spline based
approach relies on a reproducing kernel approximation technique to improve the stability of triangular B-spline in
solving equations [30]. Powell-Sabin (PS) splines based IGA represents solutions by quadratic C1 functions defined
on the PS refinement of a given triangulation [22]. Even though C1 quadratic splines are the most popular PS B-
splines, there also exist PS B-splines of higher order smoothness and degree [31, 32, 33]. The properties of PS splines
are closely related to the so-called PS triangles, which are not uniquely defined. To obtain PS splines with satisfying
properties (e.g., nonnegativity) one may solve optimization problems or resort to other computationally more efficient
alternatives [22]. For triangular Bézier based IGA, continuity constraints between adjacent Bézier patches need to be
imposed in constructing globally Cr-continuous splines [19, 34].

An alternative to the above so-called macro-elements is the spline spaces spanned by compactly-supported
smooth functions. A well-understood example of such functions is the so-called simplex spline. There are several
constructions of spaces using simplex splines, e.g., triangular B-splines [30], Delaunay configuration B-splines [9, 35]
and the latest triangle configuration B-splines (TCB-splines) [10, 36]. We refer the reader to the survey for existing
constructions of simplex spline spaces [9]. The space spanned by simplex splines has been largely ignored by the
engineering community, perhaps due to their computational complexity [37, 38]. Even so, some of the existing
simplex spline spaces have been applied to applications such as data fitting [39], FEA [40, 30] and collocation [41].
In particular, the latest construction is the so-called TCB-splines, which share many merits with traditional B-splines.
Moreover, TCB-splines have appealing properties superior to tensor-product splines and other simplex spline spaces.
For example, compared to tensor-product splines, TCB-splines support local refinement and are more flexible to
accommodate general parametric domains. For triangular B-splines, one has to explicitly add the auxiliary knots to
the given set of knots in advance in order to form a valid knot sequence for the basis construction. These auxiliary
knots could affect the stability of triangular B-splines in solving partial differential equations [30]. In contrast, TCB-
splines are free of auxiliary knots. Delaunay configuration B-spline (DCB-spline) relies on the Delaunay triangulation
in selecting knot subsets. TCB-splines perform better than DCB-splines in modeling sharply varying surfaces [39].

The attractive theoretical properties of TCB-splines make them an ideal basis for IGA. This paper focuses
on directly solving PDEs on complex polygonal domains without considering geometric map, which will lay the
foundation to isogeometric analysis using general geometries. In our finite element framework, the solution field
is represented by Ck−1-continuous TCB-splines. In particular, we look into the construction of TCB-spline space,
discuss the numerical integration scheme and present adaptive knot placement using TCB-splines. We investigate the
performance of TCB-splines in both uniform and adaptive refinement by showing numerical results on various well-
known benchmark examples. Our approach is fully automatic and applicable to polygonal domains and allows local
refinement. Different from previous work of using non-tensor product splines, our approach can automatically build
Ck−1-continuous basis functions over polygonal domains, with no continuity constraints needed on convex polygonal
parametric domains. For non-convex polygonal parametric domains, we can construct C1-continuous geometric
mapping by imposing n continuity constraints, where n is the number of concave corners.

The remainder of this paper is organized as follows: Section 2 covers the preliminaries of TCB-splines. In
Section 3, we discuss the computation of TCB-splines, including the knot placement method, construction of Ck−1-
continuous basis functions on convex domains and C1-continuous basis functions on concave domains, and the
numerical integration scheme for TCB-spline basis functions. In Section 4, we present experimental results by solving
the Poisson and biharmonic equations on various polygonal domains. We present our conclusions, limitations, and
suggestions for future work in Section 5.
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Algorithm 1 Link triangulation procedure
Input: Degree k t-config family Γk

Output: Degree k + 1 t-config family Γk+1
1: Initialize Γk+1 = ∅

2: for each v-config J ∈ V(Γk) do
3: Compute the polygon P formed by the link of J, i.e., P =

∑
lk(J,Γk)

4: if P , ∅ then
5: Partition the polygon P into a set of triangles C
6: Γk+1 ←− Γk+1 ∪ {(T, J)|T ∈ C}
7: end if
8: end for

2. TCB-splines

TCB-splines are formed as a linear combination of simplex splines [42]. These simplex splines are defined over
the so-called triangle configurations [10, 39]. This section first introduces simplex splines and triangle configurations,
and then explains how the basis functions of TCB-splines are constructed based on them. A detailed introduction to
TCB-splines can be found in [10].

2.1. Simplex splines

Simplex splines are piecewise polynomials defined by a set of points (referred to as knots) in R2 [42]. Given a
set of three non-collinear knots V = {t0, t1, t2}, a degree zero simplex spline defined by the knot set V = {t0, t1, t2} is
simply a normalized characteristic function of the triangle formed by {t0, t1, t2},

M(u|{t0, t1, t2}) =

{
0, u < [V),
1/|area(V)|, u ∈ [V),

where [· · · ) denotes the half-open convex hull of a set of points [43], which is a generalization of the half-open domain
in R. A degree k simplex spline can be recursively evaluated as a linear combination of degree k − 1 simplex splines
using the Micchelli recurrence relation [44]. Given a set of knots V = {t0, · · · , tk+2} from R2 and an arbitrarily chosen
knot set X = {ti0 , ti1 , ti2 } consisting of three non-collinear knots from V , the Micchelli recurrence relation for a degree
k simplex spline M(u|V) defined over V has the form:

M(u|V) =

2∑
j=0

λ j(u|X)M(u|V\{ti j }), u ∈ R2,

where λ j(u|X) are barycentric coordinates of u with respect to X satisfying
∑2

j=0 λ j(u|X) = 1 and
∑2

j=0 λ j(u|X)ti j = u.
Simplex splines share many properties with univariate B-splines. For example, a simplex spline defined over a

knot set V is non-negative and has local support on the convex hull of the knots in V . A simplex spline defined over a
knot set V = {t0, · · · , tk+2} is a piecewise polynomial of degree k over the partition induced by the knots in V . Knots
are said to be in general position if there are no coalescent knots and no three knots are collinear. It is known that if V
is in general position, this simplex spline is Ck−1-continuous across the so-called knot lines, which are the segments
[ti, t j] with i, j ∈ {0, · · · , k + 2} and i , j. We call these segments knot lines. On the other hand, the continuity order of
a simplex function decreases if coalescent knots or collinear knots appear in V , which resembles the coalescent knots
in the univariate B-spline case. If s knots in V are collinear, then the simplex is Ck+1−s continuous across this line. In
particular, a degree k simplex spline (defined by k + 3 knots) with k + 2 collinear knots, when restricted on this line,
degenerates to a univariate B-spline defined on these k + 2 knots. A detailed theory of simplex splines can be found
in [45].
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Figure 1: The link triangulation procedure (LTP) and t-configs. (a) Initial triangulation, which corresponds to a family of degree-zero t-configs
{({t0, t1, t2}, ∅), ({t0, t2, t3}, ∅), ({t0, t3, t4}, ∅), · · · }; (b) a degree-one v-config {t0} ∈ V(Γ0) marked by the solid yellow point and the e-v-config pairs
(−−→t1t2, {t0}), (−−→t2t3, {t0}), (−−→t3t4, {t0}), (−−→t4t5, {t0}), (−−→t5t6, {t0}) and (−−→t6t1, {t0}) induced by degree zero t-config ({t0, t1, t2}, ∅), ({t0, t2, t3}, ∅), ({t0, t3, t4}, ∅),
({t0, t4, t5}, ∅), ({t0, t5, t6}, ∅) and ({t0, t6, t1}, ∅), respectively, where the e-configs are marked by red dash arrows; (c) the polygon

∑
lk({t0},Γ0) =

[t1, t2, t3, t4, t5, t6] (filled in gray) formed by the links lk({t0},Γ0) = {
−−→t1t2,
−−→t2t3,
−−→t3t4,
−−→t4t5,
−−→t5t6,
−−→t6t1} and its triangulation (blue dash lines), which

yields four degree-one t-configs: ({t1, t2, t3}, {t0}), ({t1, t3, t6}, {t0}), ({t6, t3, t4}, {t0}) and ({t6, t4, t5}, {t0}); (d) the e-v-config pair (−−→t6t4, {t0, t5}) induced
by degree-one t-config ({t6, t4, t5}, {t0}), where the e-config is marked by red dash arrows; (e) the e-v-config pairs (−−→t8t6, {t0, t5}), (−−→t7t8, {t0, t5}) and
(−−→t4t7, {t0, t5}) sharing a common v-config {t0, t5} are induced by degree-one t-configs ({t6, t0, t8}, {t5}), ({t8, t0, t7}, {t5}), ({t7, t0, t4}, {t5}), respectively,
where e-configs are marked by red dash arrows; These three e-v-config pairs share a common v-config {t0, t5}with the e-v-config pair ({t6, t4, t5}, {t0})
shown in (d); (f) the polygon [t8, t6, t4, t7] (filled in gray) formed by link lk({t0, t5},Γ1) and its triangulation (blue dash line), generating two degree
two t-configs ({t8, t6, t7}, {t0, t5}) and ({t7, t6, t4}, {t0, t5}).

2.2. Link triangulation procedure (LTP)
There are two main ingredients in the construction of TCB-spline: simplex splines and triangle configurations. The

triangle configurations are knot subsets selected from a given knot set which are used for defining simplex splines. The
link triangulation procedure (LTP) is a recursive algorithm that computes the family of triangle configurations such
that the simplex splines defined on them span a space retaining the fundamental properties of univariate B-splines. To
facilitate the explanation of LTP, we first introduce several necessary terminologies [10, 39].

We denote the cardinality of a set X by #X. Given a set of knots K ⊂ R2 in general positions, a degree k triangle-
configuration (t-config) is a pair of knot subsets (T, I) with T, I ⊂ K, #T = 3 and #I = k, where knot subsets T
and I are referred to as the first and second knot subsets of the t-config (T, I), respectively. We denote a family of
degree k t-configs by Γk. Note that an arbitrary triangulation of given knot set K corresponds to a family of degree
zero t-configs Γ0, where in each t-config, the first knot subset is formed by three vertices of a triangle and the second
knot subset is empty; see Figure 1(a). LTP starts with an arbitrary triangulation Γ0 and recursively computes t-config
families of higher degrees. For a degree k t-config (T, I), the first knot subset T corresponds to a counter-clockwise
oriented triangle, and we further define the following terminologies.

• v-config is a knot subset of size k + 1 formed by the union of a knot v ∈ T and the knot subset I, i.e., {v} ∪ I.
Therefore, a degree k t-config can generate three degree k + 1 v-configs. For example, a degree zero t-config
T = ({t0, t1, t2}, ∅) generates three degree-one v-configs {t0}, {t1} and {t2}.

• e-config is an oriented edge (of the oriented triangle formed by T ) that is opposite to a knot v ∈ T , denoted by
vT . A degree k t-config can generate three e-configs. For example, a degree one t-config T = ({t1, t2, t3}, {t0})
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generates three e-configs t1 T =
−−→t2t3, t2 T =

−−→t3t1 and t3 T =
−−→t1t2; see Figure 1(c). A pair of opposite e-configs are

two e-configs with the same endpoints but opposite orientations.

• e-v-config pair is a pair of an e-config and a v-config induced by a knot v ∈ T , i.e., (vT, {v} ∪ I). A degree k
t-config can generate three different e-v-config pairs. For example, a zero t-config T = ({t0, t1, t2}, ∅) generates
e-v-config pairs (−−→t0t1, {t2}), (−−→t1t2, {t0}) and (−−→t2t0, {t1}).

Different degree k t-configs may have e-v-config pairs sharing a common v-config J. For example, there are five
e-v-config pairs (−−→t1t2, {t0}), (−−→t2t3, {t0}), (−−→t3t4, {t0}), (−−→t4t5, {t0}) and (−−→t5t6, {t0}) are induced by t-configs ({t0, t1, t2}, ∅),
({t0, t2, t3}, ∅), ({t0, t3, t4}, ∅), ({t0, t4, t5}, ∅) and ({t0, t5, t6}, ∅), respectively. These five e-v-config pairs share a common
v-configs {t0}; see Figure 1(b), where e-configs are marked by red dash arrows. The set of e-configs from the e-v-config
pairs sharing a common v-config J is called the link of the v-config J, denoted by

lk(J,Γk) := {vT |v ∈ T, v ∈ J, (T, J\{v}) ∈ Γk}.

For a link lk(J,Γk), we remove the opposite e-config pair if it exists. It has been proved that the remaining e-
configs form a simple polygon (denoted by

∑
lk(J,Γk)) by connecting the oriented edges at the coincident source

and destination endpoints [10, 46]. In particular, the link of a v-config J, which consists of a single vertex, is the set
of oriented edges opposite to this vertex; see an example in Figure 1(b), where J = {t0} and the polygon

∑
lk({t0},Γ0)

is formed by connecting the one-ring neighbors of t0 counterclockwise. We denote the collection of all v-configs of
a degree k t-config family Γk by V(Γk). LTP takes a family of degree k t-config Γk as input, and produces a family
of degree k + 1 t-config Γk+1 as output. For each v-config J ∈ V(Γk), we first obtain the polygon P formed by the
link of J, i.e., P =

∑
lk(J,Γk); see Figure 1(b) and (f) for examples of

∑
lk({t0},Γk) and

∑
lk({t0, t5},Γk), respectively.

If P , ∅, then we triangulate or partition P into a set of triangles C; see Figure 1(c) and (f) for triangulation of
polygons

∑
lk({t0},Γ0) and

∑
lk({t0, t5},Γ1), respectively. Then, each triangle T ∈ C and J form a degree k + 1 t-config

(see Figure 1(c) and (f)), which is included into the k + 1 t-config family, i.e., Γk+1 ←− Γk+1 ∪ {(T, J)|T ∈ C}. The
pseudo code of LTP is shown in Algorithm 1. We start our LTP with an arbitrary triangulation Γ0 and repeatedly apply
LTP k times to obtain degree k t-config family Γk. Figure 1 shows examples of LTP up to degree 2, where the first
(resp. second) row shows the procedure of generating degree-one (resp. two) t-configs from degree zero (resp. one)
t-configs.

Remark 2.1. It is worth pointing out that LTP can yield different t-config families for a given set of knots if
different triangulation methods are used to obtain the initial triangulation Γ0 or to partition the polygon that appears
in LTP. As a special case of TCB-splines, LTP yields the so-called Delaunay configurations when the Delaunay
triangulation is adopted for both initial triangulation and polygon partition. The resulting t-config family is thus
called Delaunay configuration family, and the associated simplex splines are called DCB-splines [9, 35]. The criteria
for an appropriate triangulation of LTP may vary with different applications. From geometric point of view, a feature
sensitive triangulation method has been tailored for TCB-spline based surface fitting [39]. In Section 3.2, we will
propose a triangulation method to generate TCB-spline basis functions that are globally at least C1-continuous such
that they can be used as a basis to solve high-order PDEs.

2.3. Definition of TCB-splines
With the family of degree k t-configs Γk, we can define simplex splines M(u|T ∪ I) for each degree k t-config

(T, I). Then TCB-spline basis functions are linear combinations of these simplex splines. We denote by I the set of
all second knot subsets in Γk. Given I ∈ I, XI = {(T, I∗)|I∗ = I, (T, I∗) ∈ Γk} is the set of t-configs sharing the common
second knot subset I. The degree k TCB-spline basis function associated with a knot subset I ∈ I is defined as [10]

BI(u) =
∑

(T,I)∈XI

area(T )M(u|T ∪ I), u ∈ R2.

The Greville site ξI of BI(u) is defined as the average of the second knot subset I, i.e., ξI =

∑
v∈I

v

k , which is the
generalization of the univariate B-spline case. Figure 2 shows examples of degree one to three TCB-spline basis
functions. It has been proved that TCB-spline basis functions form a nonnegative partition of unity, possess automatic
smoothness, have local support and reproduce polynomials.
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Figure 2: Interior TCB-spline basis functions of degree one (a-c), degree two (d-f) and degree three (g-i). Columns from left to right: t-configs
sharing a common second knot subset (where knots in the first and the second knot subsets are marked in green and red, respectively, and the
triangles formed by the first knot subsets are marked in blue dash lines), top view of the associated TCB-spline basis functions and perspective
view of the basis functions. (a-c) the linear TCB-spline basis function associated with the knot subset I = {t0}, where XI consists of four degree-one
t-configs: ({t5, t6, t1}, {t0}),({t5, t1, t2}, {t0}), ({t5, t2, t3}, {t0}) and ({t5, t3, t4}, {t0}); (d-f) a quadratic TCB-spline basis function associated with the knot
subset I = {t0, t1}, where XI consists of two degree-two t-configs: ({t6, t7, t2}, {t0, t1}) and ({t6, t2, t5}, {t0, t1}) and (g-h) a cubic TCB-spline basis
function associated with the knot subset I = {t0, t1, t2}, where XI consists of three degree-three t-configs: ({t5, t7, t8}, {t0, t1, t2}), ({t5, t8, t3}, {t0, t1, t2})
and ({t3, t8, t2}, {t0, t1, t2}).

Remark 2.2. TCB-splines may be linearly dependent. Although there is a method to eliminate linear dependence
of TCB-splines in practice [39], there is no rule to guarantee linear independence of TCB-splines so far, leading to
possibly singular stiffness matrix in analysis. There are two approaches to handle this problem. First, we could use
Conjugate Gradients (CG) when the coefficient matrix has spurious zero eigenvalues. The CG method only requires
products of the stiffness matrix with vectors. CG converges to the largest eigenvalues first, and then sweeps down
through the lower modes in order. CG cannot converge to modes with zero eigenvalues. This approach has been
used successfully in analogous situations. Second, we could use an LDU decomposition. Before performing forward
reductions and back substitutions, we can check how many pivots (i.e., diagonal entries of the diagonal matrix D)
are zero. The number of zero pivots equals to the number of zero eigenvalues. For non-zero pivots, the system is
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nonsingular and the solution can proceed. Otherwise, we need to switch to the CG approach. Note that we never
found linear dependence in all examples of this paper when applying linear dependent elimination [39].

3. Computation of TCB-splines

In this section, we first introduce how to place knots for TCB-spline construction on a 2D bounded domain, which
is the solution domain of a partial differential equation (PDE). Second, we describe LTP to guarantee Ck−1-continuity
in convex regions and C1-continuity in concave regions. Third, we explain in detail the integration of TCB-splines,
which is a key step in assembling the stiffness matrix in IGA. Finally, we propose an error-guided knot placement
method for TCB-splines to achieve adaptive refinement.

3.1. Evenly-distributed knot placement
To define the TCB-spline space, we first need to place a set of knots K. Here we use the centroidal Voronoi

tessellations (CVT) [47] to generate knots in general positions that are evenly distributed within a given domain. CVT
is a Voronoi tessellation with generators coinciding with the centroids for each Voronoi region. The generators of
CVT, which are in general positions, are taken as the knots to define the TCB-spline space. As the CVT method
generates evenly spaced knots in the interior domain, the associated degree k (≥ 2) TCB-splines are Ck−1-continuous,
and these TCB-splines as well as their derivatives vanish on the domain boundary. To guarantee the partition of unity
property of TCB-splines on the domain boundary ∂Ω, which is similar to the univariate case, we introduce coalescent
and collinear knots along the boundary and compute the TCB-splines as follows.

• Step 1. The evenly distributed boundary knots and interior knots are generated by adjusting the CVT results.
In particular, the knots (i.e., centroids) of the boundary Voronoi cells are projected onto Ω. Then, CVT is
applied again to all the knots (i.e., both boundary and interior knots), where boundary knots are restricted to the
boundary; see the first column of Figure 2 as an example of the resulting knots.

• Step 2. The knot at a corner is repeated k + 1 times for degree k TCB-splines. In other words, there are k+1
knots sharing the same position at the corner; such knots are coalescent.

• Step 3. The coalescent knots at each corner are perturbed such that they are in general positions. This step
provides a topological structure (i.e., connectivity in the initial triangulation Γ0) to compute the t-config family,
and it will be further discussed in the next section.

• Step 4. We compute the t-config family and construct the corresponding simplex splines and let the perturbation
size vanish. In other words, we merely treat coalescent knots separately in t-config family computation; the
unperturbed knots are used in the computation of associated simplex splines.

The above knot placement method gives rise to a collection of TCB-splines that perform equivalently to univariate
B-splines along the boundaries. Figure 3 shows an example of a cubic TCB-spline basis function with five collinear
knots on the boundaries, whose restriction to the boundary is the classical univariate cubic B-spline basis function.
Figure 4 shows an example of degree-two TCB-spline basis function defined on coalescent knots (with a multiplicity of
three) at the upper left corner, whose restrictions to the boundary are the univariate quadratic B-spline basis functions
on knots with a multiplicity of three.

Remark 3.1. The most straightforward approach to obtain evenly spaced knots is to use a regular grid of knots.
However, knots forming such a grid are inappropriate for TCB-splines because it involves collinear knots, leading
to reduced continuity of TCB-splines. To avoid collinear knots in the interior domain, we use the CVT method to
generate knots that are distributed in a both uniform and random manner. Other methods, such as the Poisson-disk
sampling method [48], may be also viable to generate knots in general positions.

Remark 3.2. In practice, collinear knots and coalescent knots are undesired in the interior of parametric domain
as they reduce the continuity order of simplex splines. In our framework, we use the CVT method to generate evenly
spaced knots given a pre-specified density. Although there is no guarantee that the CVT method can avoid collinear
knots, numerically we never find collinear knots in the interior of parametric domain in our experiments. If in any case
collinear knots appear, we can either perturb these knots or perform several more steps of Lloyd’s iteration locally to
numerically eliminate them.

7



Figure 3: A degree three TCB-spline basis at domain boundary. From left to right: t-configs, top view of the associated TCB-spline basis functions
and perspective view of the basis function. In this example, the TCB-spline basis is the linear combination of a simplex spline defined over a single
t-config ({t0, t1, t2}, {t3, t4, t5}), where the knots in the first and second knot subsets are marked by green and red dots, respectively, and the triangle
formed by the first knot subset is marked by blue dash lines.

Figure 4: A degree-two TCB-spline basis at a corner. From left to right: t-configs, top view of the associated TCB-spline basis functions and
perspective view of the basis function. In this example, knots at the upper left corner have a multiplicity four and the TCB-spline basis is the linear
combination of a simplex spline defined over a single t-config ({t0, t1, t2}, {t0, t0}), where the knot in the second knot subset is marked by red (i.e.,
triple-knots at the upper left corner) and the knots in the first knot subset are marked by green with one hidden at the upper left corner, and the
triangle formed by the first knot subset is filled in gray.

3.2. C1-continuity around corners

Note that TCB-splines defined with the perturbed knots may be only C0-continuous in the interior domain of Ω.
Similar to univariate B-splines of coalescent knots, if a t-config (T, I) contains both interior knots and coalescent knots
of multiplicity s > 1, the continuity of the associated simplex will be reduced by s at the knot lines formed by interior
knots and coalescent knots. To guarantee that TCB-splines possess C1-continuity on the entire domain, we need to
add several constraints to the triangulation referred in LTP from Algorithm 1.

We here use the quadratic case as an example to illustrate what these constraints are, but the same method also
works for higher-degree cases. Figure 5 shows a convex corner of the domain. With degree two, there are three
coalescent knots (t1, t2 and t3) sharing the same position at this corner. To compute t-configs, we perturb these knots
and consider two different initial triangulations shown in Figure 5(a) and (b). From LTP we observe that, for a
quadratic t-config, knots in the second knot subset form an edge of the initial triangulation, and knots in the first knot
subset belong to the one-ring neighborhood of this edge; see the second row in Figure 2 as an example. Knots in
the second knot subset can also form a knot line of the associated simplex spline. Therefore, if we adopt the initial
triangulation in Figure 5(a), there may exist a quadratic t-config whose second knot subset is {t1, t5} and the first
knot subset contains t2 and/or t3. In other words, the associated simplex spline has a knot line [t1, t5], where t1 is of
multiplicity three. Thus, the continuity order of this quadratic basis function is decreased to C−1 across this knot line.

To achieve C1-continuity, we prevent coalescent knots and its one-ring neighbors from connecting with interior
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Figure 5: C1 conditions at a convex corner. (a) Coalescent knots (red dots) and its triangulation at a concave corner; and (b) coalescent knots are
beyond the two-ring neighborhood of interior knots in the constrained triangulation.

knots in LTP. First, we introduce two new knots (orange points t7, t8 in Figure 5(b)) on adjacent boundary edges of the
corner such that the triangle [t1, t7, t8] contains only two perturbed knots (i.e., t2 and t3) in its interior; see Figure 5(b).
Second, the triangle [t1, t7, t8] and the quadrilateral [t4, t6, t8, t7] (formed by the newly added knots and existing knots
t4, t6) are further triangulated.; see Figure 5(b). Thus, the interior knots are beyond the two-ring neighborhood of the
coalescent knots, leading to t-configs that do not contain both coalescent knots and interior knots simultaneously. In
this manner, simplex splines are guaranteed to be C1-continuous around a convex corner. Consequently, the TCB-
splines, as linear combinations of simplex splines, are globally C1-continuous.

However, this idea cannot be directly adapted to define C1 basis functions at a concave domain, because coalescent
knots at a concave corner are inevitably connected to interior knots in a triangulation (see t8 in Figure 6), giving rise
to simplex splines with continuity reduced inside domain Ω. Let us consider again the quadratic case at a concave
corner, as shown in Figure 6. Knots t1, t2 and t3 are three coalescent knots at this corner, where t2 and t3 are perturbed.
The two closest boundary knots to the concave corner are t4 and t6; see Figure 6(a). The idea to achieve C1 at a
concave corner is to first restrict discontinuity of simplex splines to a single segment (i.e., [t1, t5] in Figure 6(b)) and
then to adjust the linear combination of these simplex splines to achieve a C1 TCB-spline. More specifically, we first
add a knot t5 in the interior of the domain such that the concave region is split into two convex regions and no other
knots (except the perturbed knots) locate in the interior of the polygonal region [t1, t4, t5, t6]; see Figure 6(b). For each
convex corner ̂t4t1t5 or ̂t5t1t6, we add the new knots and perform constrained triangulation as we did in Figure 5. In
particular, the new knots t7, t8 and t9 are inserted on segments [t1, t4], [t1, t5] and [t1, t6], respectively, such that the
perturbed knots (t2 and t3) locate in the interior of polygonal region [t1, t7, t8, t9]. Thus t2 and t3 split triangles [t1, t7, t8]
and [t1, t8, t9], respectively; see Figure 6(c). In this way, the one-ring or two-ring neighboring knots of the coalescent
knots t1, t2, t3 locate either on the boundary or on the segment [t1, t5]. Similar to the case of a convex corner, quadratic
simplex splines are C1-continuous in the interior of the convex region ̂t4t1t5 or ̂t5t1t6. In other words, simplex splines
are only discontinuous across the segment [t1, t5]. The resulting TCB-splines, defined as linear combinations of these
simplex splines, are C0-continuous across the segment [t1, t5] because discontinuous simplex splines cancel out in each
linear combination [10, 39]). Moreover, these C0 basis functions are linearly combined to define a C1 TCB-spline
basis function. Assume that there are M C0-continuous TCB-splines BIi (i = 1, · · · ,M) with Greville sites ξ1, · · · , ξM ,
where M is an integer depending on the degree and triangulation and in our experiments we have M ∈ {3, 4, 5}; see
Figure 6(d) as an example of M = 4. The linear combination of these basis functions

M∑
i=1

ciBIi

is not C1-continuous for a general choice of coefficients c1, · · · , cM . However, if the points (ξi, ci) ∈ R3 are coplanar,
the linearly combined splines can achieve C1, which is similar to imposing C1-constraints on Bézier patches [49].
Note that, coefficients satisfying coplanarity conditions are not unique. In our experiment, coplanarity conditions to
ensure C1 continuity around concave corners are explicitly enforced. In particular, the coefficients of C0-continuous
TCB-splines with Greville sites on the boundary are determined by boundary conditions, whereas coefficients of the
remaining C0-continuous TCB-splines are further determined by the coplanarity conditions at the concave corner. For
example, we assign the coefficients ci of the TCB-splines BIi with Greville sites ξi for i = 1, 3, 4 shown in Figure 6(d)
according to boundary conditions. To define a C1 spline, c2 is chosen such that point (ξ2, c2) is located on the plane

9



1t

4t

6t2t
3t

(a)

1t

4t

6t2t

5t
3t

(b)

1t2t
3t

4t

5t

6t
7t

8t
9t

(c)

1
2
3

4

(d)

Figure 6: C1-conditions at a concave corner. (a) Coalescent knots at a concave corner; (b) a tailored knot line [t1, t5], across which the simplex
splines may not be C1-continuous; (c) triangulation around the concave corner; and (d) Greville sites of C0 basis functions.

formed by those three points corresponding to the boundary (ξi, ci) (i = 1, 3, 4).

Discussion 3.1. The number of C1 TCB-splines after linear combinations is #I− #IC0 + ncon, where #I and #IC0 are
numbers of original TCB-spline basis functions and C0 basis functions, respectively, and ncon is the number of concave
corners. As the coefficients are determined by the boundary conditions, there is no guarantee that C1-continuous
functions formed by the linear combination of C0-continuous functions at each concave corner are non-negative.

The idea can be generalized to other higher order TCB-splines to achieve C1-continuity around concave corners.
For a general polygonal domain, the number of coplanarity conditions is equal to the number of concave corners. It is
also possible to achieve higher order continuity around concave corners by imposing stronger continuity conditions,
which should be analogous to the case of Bézier patches, but discussion is beyond the scope of this paper.

3.3. Numerical integration for TCB-splines

Accurate numerical integration is important when using TCB-splines in IGA. It is not sufficient to only use
quadrature points on triangles in the initial triangulation because simplex splines are only piecewise polynomials
on each of the triangles. Figure 7 (a) shows an initial triangulation of a set of knots and a quadratic t-config
({t1, t2, t4}, {t3, t5}), where knots in the first and second knot subsets are marked by blue and red dots, respectively.
The simplex spline associated with this t-config is a piecewise quadratic polynomial over its support [t1, t2, t3, t4, t5]
(i.e., the convex hull of all the knots in the t-config). Note that, the simplex spline is a quadratic polynomial on
each polygonal/triangular region partitioned by all its knot lines; see the orange lines and their induced polygonal
regions in Figure 7(b). To achieve high-precision numerical integration of this simplex spline, we further triangulate
each polygonal region in Figure 7(b) and apply the quadrature rule to each of the resulting triangles. More generally,
we triangulate the entire domain restricted to all knot lines of all the simplex splines; see Figure 7(c). Thus, any
simplex spline on each resulting triangle is a polynomial, rather than a piecewise polynomial. We here adopt the
constrained Delaunay triangulations from the Computational Geometry Algorithms Library (CGAL) to generate
integration cells [50]. Figure 7(c) shows the final triangulation restricted to all the knot lines. In each triangular
integration cell, the 4-point rule [51] is adopted and it is exact for polynomials up to degree 5. It is obvious that
the triangulation (372 triangles) serving as background integration cells in Figure 7 (d) is much finer than the initial
triangulation (24 triangles) in Figure 7(a).

3.4. Adaptive knot placement

B-splines or NURBS do not support local refinement due to their tensor-product structure. The generalizations
of NURBS such as T-splines [2, 12], truncated T-splines [52], hierarchical B-splines [13], LR-splines [14, 15] and
THB-splines [16, 17] support local refinement. However, they are still based on local tensor product, and refinement
in a specified region tends to propagate to adjacent regions where refinement is not needed. On the other hand, TCB-
splines can flexibly insert knots to a specified region without introducing knots or refinement in other regions, and
thus the refinement can be well controlled within a desired region. To demonstrate the flexibility of TCB-splines
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Figure 7: Background integration cells. (a) Initial triangulation (24 triangles) of a knot set and a quadratic t-config ({t1, t2, t4}, {t3, t5}), where knots
in the first and second knot subsets are marked by blue and red dots, respectively; (b) knot lines (marked in orange) of the simplex spline associated
with t-config in (a) and the partition of its support [t1, t2, t3, t4, t5] induced by the knot lines; (c) knot lines of all simplex splines, which serve as the
constraints in the triangulation to generate integration cells; and (d) triangulation (372 triangles) of knots restricted to all knot lines, where all the
triangles serve as background integration cells in the numerical integration.

in adapting to functions that vary rapidly in local regions, we here present an adaptive knot placement strategy to
generate localized knots and apply it to solving problems whose solutions contain singularity or sharp gradient.

We start from a set of evenly distributed knots K0 of size N on domain Ω and use the approximation error to guide
the adaptive knot insertion by the following iterative algorithm:

• Step 1. The problem (i.e., a certain PDE) is solved on the current set of knots Kn (n ≥ 0). For each face Ti

in the initial triangulation Γn
0 of Kn, we compute the average L2-norm error (denoted by eL2 |Ti ) and the average

H1-norm error (denoted by eH1 |Ti ) as follows:

eL2 |Ti =

√∫
Ti
‖u − uh‖

2dΩ

area(Ti)
, eH1 |Ti =

√∫
Ti
‖∇(u − uh)‖2dΩ +

√∫
Ti
‖u − uh‖

2dΩ

area(Ti)
.

Then all the errors in {eL2 |Ti } and {eH1 |Ti } are normalized with respect to the total L2 and H1-norm errors,
respectively.

11



• Step 2. α · N faces Ti with the highest approximation error ei = βeL2 |Ti + (1− β)eH1 |Ti in the initial triangulation
Γn

0 are identified, where N is the number of faces in Γ0. Their circumcenters, collected in a set Ui, are included
into the knot set in the next step, i.e., Kn+1 = Kn ∪ Un. Note that α is a factor to adjust the number of newly
added knots Un and β is a factor to balance the influence of two kinds of errors.

• Step 3. One step of Lloyd’s relaxation, which moves a point towards the centroid of its Voronoi region [53], is
applied to the knot set Kn+1. In this relaxation step, the old knots in Kn are fixed and the newly added knots in
Un are slightly adjusted such that the interior knots in Kn+1 are in general positions. Then, a degree k t-config
family is computed by applying LTP, where the triangulation is subject to the constraint that all the old knots
and edges in Γn

0 must stay in Γn+1
0 .

The above three steps are repeatedly carried out to adaptively refine the knot set. In the end, we obtain TCB-splines
supporting both evenly distributed and adaptive knot placement. The constructed TCB-splines are Ck−1-continuous in
convex regions and C1-continuous in concave regions, which are analysis-suitable for IGA applications.

4. Numerical results

In this section, we construct TCB-splines on domains of widely varying shapes and use them to numerically solve
the Poisson’s and biharmonic equations. These examples are aimed to demonstrate that TCB-splines can serve as
a candidate of IGA basis functions, flexibly accommodating complex geometries with automatic C1-continuity and
local adaptivity.

4.1. 2D Poisson equation

4.1.1. Model problem
We consider the following 2D Poisson’s equation with the Dirichlet boundary condition:{

−∆u = f on Ω

u = g on ∂Ω
(1)

where Ω is the solution domain and ∆ is the Laplace operator. In its weak form, this amounts to find u ∈ {w : w ∈
H1(Ω) and w = g on ∂Ω} such that∫

Ω

∇u · ∇v =

∫
Ω

f vdΩ for all v ∈ w : w ∈ H1(Ω) and w = 0 on ∂Ω.

Following the standard Galerkin approximation scheme, we discretize both u and v in terms of TCB-splines, that
is, uh =

∑
I∈Iv∪Ib

cI BI and vh =
∑

I∈Iv
dI BI , where cI , dI ∈ R, Iv is the index set of TCB-splines vanishing on the

boundary, and Ib contains those non-zero ones on the boundary. Substituting the discretized functions into the weak
form and following the arbitrariness of vh (i.e., arbitrary bI), we obtain a system of linear equations to be solved for
the unknown coefficients cI :

A


cI0

...
cIn

 =


fI0

...
fIn

 with AIi,I j =

∫
Ω

∇BIi · ∇BI j dΩ and fIi =

∫
Ω

f BIi dΩ. (2)

The numerical integrations of (2) are performed via quadrature rule for triangles, where the triangular integration cells
are generated by following the method described in Section 3.3. In what follows, we use cubic TCB-splines to solve
the above problem.

4.1.2. Uniformly refined mesh
To study the convergence performance, we solve the problem on a series of meshes by increasing the number of

knots, which are evenly distributed by the CVT method. Both the L2-norm error and the H1-norm error are calculated.
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Example 1. We start with a square domain Ω = [0, 1] × [0, 1] with the following manufactured solution:

u(x, y) = xy sin(3πx) sin(3πy).

Here we only have a homogeneous Dirichlet boundary condition. The domain Ω, exact solution and the resulting
errors in L2-norm and H1-norm with respect to square root of degrees of freedom (DOF) are presented in Figure 8.
We observe that the optimal convergence rates (4 for the L2 error and 3 for the H1 error) are achieved by using cubic
TCB-splines.

(a) Domain Ω (b) Exact solution
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H1-norm
L2-norm

(c) Convergence plot

Figure 8: A Poisson problem on a square domain and approximation errors in the L2-norm and H1-norm versus √ndo f obtained for evenly
distributed knots using cubic TCB-splines.

Example 2. In the second example, we consider an H-shape domain as shown in Figure 9(a), with the following
manufactured solution

u(x, y) =
1
2

ex sin(y).

Exact solution and the resulting errors in L2-norm and H1-norm with respect to square root of DOF are presented in
Figure 9(b-c). The convergence rates displayed in Figure 9(c) again demonstrate the optimal approximation power of
TCB-splines.
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(a) Domain Ω (b) Exact solution (c) Convergence plot

Figure 9: A Poisson problem on an H-shape domain and approximation errors in the L2-norm and H1-norm versus √ndo f obtained for evenly
distributed knots using cubic TCB-splines.
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4.1.3. Adaptively refined mesh
In the following two examples, we apply the refinement strategy in Section 3.4 to solving two problems with

known analytic solutions that contain singularity and sharp gradient.

Example 3. In this example, we solve a Poisson problem (1) on a unit square with exact solution given by

u(x, y) = arctan(100(
√

(x − 1.25)2 + (y + 0.25)2) −
π

3
)).

We choose α = 0.8 and β = 1, i.e., we use error in L2 norm to control the distribution of new knots. As depicted in
Figure 10(b), the solution changes rapidly across a circular band in the domain. Although the solution field is smooth,
optimal convergence rates can only be achieved when the size of triangle is small enough. In other words, a large
number of knots are needed if we use the evenly distributed knot placement method. In order to solve this problem
efficiently, we adopt the adaptive knot placement method to obtain a much faster convergence with a relatively small
number of DOF. In Figure 11, we observe that the errors dominate in the vicinity of the circular band. Adaptive knot
placement iterations and distribution of the newly added knots are consistent with the errors. Figure 12 shows knot
sets in different refinement steps in the adaptive knot placement algorithm. We can observe clearly that the triangles
are locally refined in the circular band. Results in Figure 10(c) show that TCB-splines based on adaptive refinement
converge much faster and yield much better accuracy per DOF than that based on uniform refinement.

(a) Square domain Ω (b) Exact solution (c) Convergence plot

Figure 10: A Poisson problem with a sharp internal layer and the approximation errors measured in the L2-norm and H1-norm versus √ndo f for
evenly distributed knots and adaptive knot placement method using cubic TCB-splines.

Example 4. In this example, we solve the Laplace equation (1) on an L-shaped domain with the following exact
solution

u(r, θ) = r
2
3 sin

(2θ + π)
3

,

where the right hand side f = 0 and g is given by the exact solution. The exact solution has a singularity at the origin,
with a partial derivative not well defined. For such problems, convergence rates are controlled by the singularity rather
than by the polynomial degree. Hence, optimal convergence rates cannot be achieved by using uniformly refined knot
sets; see Figure 14(c). Alternatively, the adaptive knot placement method is adopted to provide sufficient refinement
around the singularity point, so a much faster convergence can be achieved. In this example, we choose α = 0.8
and β = 0, i.e., we use error in H1-norm to control the distribution of new knots. As has been shown in Figure 15,
our adaptive knot placement method is able to locally refine the triangles around the singular region. Results in
Figure 14(c) shows that adaptive knot placement enables us to achieve much faster convergence rates than the evenly
distributed knot placement method.

Discussion 4.1. In adaptive mesh refinement, we use either the L2- or the H1-norm error to guide the refinement. In
Example 4, the exact solution has a singularity at the concave corner, with a partial derivative not well defined. We
use an approximation error in H1-norm to guide the distribution of knots, where the error of the first order derivatives
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(a) U0 (b) U3 (c) U6

Figure 11: Newly added knots in the adaptive knot placement method in Example 3, where newly added knots Un (#Un = 40) are marked in pink,
and old knots Kn and degree zero t-configs Γn

0 are marked in black dots and black solid lines, respectively.

(a) Initialization (b) 3rd iteration (c) 6th iteration

(d) 9th iteration (e) 12th iteration (f) 15th iteration

Figure 12: The adaptively placed knot set and Γn
0. A total of 50 evenly distributed knots are used in the initialization stage (a) and 40 new knots are

added in each following iteration step.

dominates. Thus, newly added knots are apt to concentrate around the singularity to effectively reduce the H1-norm
error. On the other hand, as the exact solution itself varies smoothly, the region away from the singularity should also
be refined to further reduce the L2-norm error, which, however, is not happening as we primarily use the H1 error to
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(a) (b)

Figure 13: Two different triangulations on the same set of knots. (a) Delaunay triangulation (condition no.: 287.9311); and (b) triangulation with a
thin triangle (condition no.: 285.9585).

guide the refinement. Hence, the error in L2-norm levels off in this example.

Discussion 4.2. Narrow triangles are usually undesired in finite element method for solving partial different equations
to avoid the numerical stability problem. However, we observe that the construction of TCB-spline basis and their
application in solving the Poisson equation are not influenced by such triangles. We consider an extreme case
as an example shown in Figure 13, where 40 knots are evenly distributed and we use Delaunay triangulation in
Figure 13(a). Some edges are flipped locally to create a narrow triangle in Figure 13(b). The condition number
of the obtained stiffness matrices on both triangulations are 287.9311 (Figure 13(a)) and 285.9580 (Figure 13(b)),
respectively. Numerically, narrow triangles do not seem to be an issue in our experiment. However, our understanding
of the relationship between the knot mesh (including knot positions and their connectivity), numerical accuracy and
stiffness matrix condition number is far from complete. More sufficient theoretical analysis and numerical experiments
on the relationship between knot meshes and matrix condition are needed.

(a) L-shape domain Ω (b) Exact solution (c) Convergence plot

Figure 14: A Poisson problem with a singularity point on the boundary and approximation errors in the L2-norm and the H1-norm versus √ndo f
for evenly distributed knots and adaptive knot placement using cubic TCB-splines.
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(a) Initialization (b) 3rd iteration (c) 6th iteration

(d) 9th iteration (e) 12th iteration (f) 15th iteration

Figure 15: The adaptively placed knot set and Γn
0 in Example 4. A total of 50 evenly distributed knots are used in the initialization stage (a) and 40

new knots are added in each following iteration step.

4.2. Biharmonic equations

4.2.1. Model problem
Global C1-continuity is necessary for solving fourth-order PDEs. The biharmonic equation is a typical example

of such PDEs. In this section, we construct C1 TCB-splines following the strategies in Section 3.2 and solve the
biharmonic equation on a domain Ω subject to homogeneous boundary conditions on the domain boundary ∂Ω:

∆2u = f on Ω

u = 0 on ∂Ω
∂u
∂n = 0 on ∂Ω

(3)

where n is the outward normal on the boundary ∂Ω. In our tests, the data f is obtained from a certain manufactured
solution u. Reformulating Equation (3) in the weak form, we find u ∈ H2

0(Ω) such that∫
Ω

∆u∆vdxdy =

∫
Ω

f vdxdy,

for all v ∈ H2
0(Ω), v = 0 and ∆v · n = 0 on ∂Ω. Following the same Galerkin procedure as described in Section 4.1.1,

we end up with a system of linear equations. In what follows, we solve the biharmonic equations on a square domain
and an L-shape domain.
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4.2.2. Uniformly refined mesh
To study the convergence performance, we solve the problem on a series of meshes by increasing the number of

knots. The knots are evenly spaced using by the CVT method. Both the L2-norm error and the H1-norm error are
reported.

Example 5. We consider the biharmonic equation (3) on a square domain with Ω := [−1, 1] × [−1, 1] and f is given
by the exact solution

u(x, y) =
25
π4 (1 + cos(πx))(1 + cos(πy)).

We generate different numbers of evenly distributed knots on Ω using the CVT method and solve the equation using
cubic TCB-splines. Figure 16 displays the solution domain, exact solution and L2 and H1 errors with respect to root
square of DOF. We again observe optimal convergence rates for all the errors.

(a) Square domain Ω (b) Exact solution (c) Convergence plot

Figure 16: A biharmonic problem on a square domain and approximation errors of cubic TCB-splines defined over evenly distributed knots in the
L2-norm and H1-norm versus √ndo f .

Example 6. We next consider the biharmonic equation (3) on an L-shape domain Ω := [−1, 1]×[−1, 1]\[0, 1]×[0, 1],
where f is given by the exact solution

u(x, y) = sin(πx) sin(πy)(cos2(πx) − 1)(cos2(πy) − 1).

As shown in Figure 17(c), the optimal convergence rates can be achieved.

(a) Square domain Ω (b) Exact solution (c) Convergence plot

Figure 17: A biharmonic problem on an L-shaped domain and approximation errors of cubic TCB-splines defined over evenly distributed knots in
the L2-norm and H1-norm versus √ndo f .
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To summarize, we have numerically studied the TCB-spline based IGA in solving both Poisson and bi-harmonic
problems over various domains. Numerical experiments have shown optimal convergence rates in terms of both H1-
and L2-norms in all the numerical tests. We have further applied adaptive knot placement to solve the Poisson problem
whose solution has singularity or sharp gradient. We found that TCB-splines based on adaptive knot placement clearly
exhibits superior convergence over those based on uniform knot placement, where the adaptive case achieves the same
accuracy with much fewer degrees of freedom.

Discussion 4.3. Convergence rate is widely investigated to evaluate the performance of numerical schemes for
solving PDEs. Several papers in the IGA community have reported numerical evidence of optimal convergence
rates on general 2D domains with a globally smooth construction (i.e., at least C1 everywhere). Among them,
the work related to tensor-product splines includes Hermite splines [54], manifold splines [55], analysis-suitable
G1 parameterizations [56] and splines based on degenerated Bézier patches [57, 58], whereas rational triangular
Bézier spline [34] is the work related to non-tensor product splines. The investigation on general 3D domains is
limited. In tensor product splines, only one literature shows optimal convergence rates for 3D with a blended B-spline
construction [59], which, however, only possesses C0 continuity in irregular regions. In non-tensor product splines,
rational trivariate Bézier–Bernstein polynomials [21] can achieve optimal convergence rates with a global C1 space
using degree-5 splines. PS B-spline is also a C1 non-tensor product spline that can achieve optimal convergence
rates [22]. Theoretical analysis of the optimal convergence behavior with TCB-splines in IGA is not trivial, which is
part of our future work.

5. Conclusion and future work

In this paper, we have presented a new IGA framework based on TCB-splines. Due to the superior properties of
TCB-splines, our framework is able to solve equations on general domains. Local refinement is flexible without
introducing undesirable propagation in neighboring regions. Unlike Bézier patches based IGA, which requires
imposing continuity constraints between adjacent patches [19], our method can construct globally Ck−1-continuous
basis on convex domain automatically and C1-continuous basis functions on concave regions by imposing a small
number of continuity constraints (which equals to the number of concave corners). The application of TCB-
splines in IGA has been demonstrated by solving several examples, including the Poisson’s equation using evenly
distributed knots and adaptively placed knots, and the biharmonic equation using evenly distributed knots. For all
these applications, numerical results have shown optimal convergence rates.

Despite the generally promising results shown in the paper, our framework suffers from two major limitations:
(1) TCB-splines may possess linear dependency and may limit their use in applications that rely heavily on the
property of linear independence; and (2) to achieve high-precision integration, the triangulation used for integration
is much finer than the triangulation used for defining basis, leading to a great computational burden. Hence, one
of our future work is to study how to identify and theoretically eliminate the linear dependency that may exist in
TCB-splines. Another aspect we would like to improve is integration. To achieve efficient computation, a more
sophisticated evaluation method and data structure are desired to make TCB-splines more appealing for practical
industrial applications. Moreover, the influence of narrow triangles on their resulting stiffness matrices needs further
investigation especially in theory. Finally, theoretical analysis of optimal convergence rates and extending TCB-
splines to 3D are two other potential directions to explore.
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[33] J. Grošelj, H. Speleers, Construction and analysis of cubic Powell–Sabin B-splines, Computer Aided Geometric Design 57 (2017) 1–22.
[34] S. Xia, X. Wang, X. Qian, Continuity and convergence in rational triangular Bézier spline based isogeometric analysis, Computer Methods
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